On the residual inverse iteration for nonlinear eigenvalue problems admitting a Rayleigh functional
نویسندگان
چکیده
The residual inverse iteration is a simple method for solving eigenvalue problems that are nonlinear in the eigenvalue parameter. In this paper, we establish a new expression and a simple bound for the asymptotic convergence factor of this iteration in the special case that the nonlinear eigenvalue problem is Hermitian and admits a so called Rayleigh functional. These results are then applied to discretized nonlinear PDE eigenvalue problems. For this purpose, we introduce an appropriate Hilbert space setting and show the convergence of the smallest eigenvalue of a Galerkin discretization. Under suitable conditions, we obtain a bound for the asymptotic convergence factor that is independent of the discretization. This also implies that the use of multigrid preconditioners yields mesh-independent convergence rates for finite element discretizations of nonlinear PDE eigenvalue problem. A simple numerical example illustrates our findings.
منابع مشابه
Local convergence analysis of several inexact Newton-type algorithms for general nonlinear eigenvalue problems
We study the local convergence of several inexact numerical algorithms closely related to Newton’s method for the solution of a simple eigenpair of the general nonlinear eigenvalue problem T (λ)v = 0. We investigate inverse iteration, Rayleigh quotient iteration, residual inverse iteration, and the single-vector Jacobi-Davidson method, analyzing the impact of the tolerances chosen for the appro...
متن کاملNonlinear Rayleigh-ritz Iterative Method for Solving Large Scale Nonlinear Eigenvalue Problems
A nonlinear Rayleigh-Ritz iterative (NRRIT) method for solving nonlinear eigenvalue problems is studied in this paper. It is an extension of the nonlinear Arnoldi algorithm due to Heinrich Voss. The effienicy of the NRRIT method is demonstrated by comparing with inverse iteration methods to solve a highly nonlinear eigenvalue problem arising from finite element electromagnetic simulation in acc...
متن کاملA New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملInverse, Shifted Inverse, and Rayleigh Quotient Iteration as Newton's Method
Two-norm normalized inverse, shifted inverse, and Rayleigh quotient iteration are well-known algorithms for approximating an eigenvector of a symmetric matrix. In this work we establish rigorously that each one of these three algorithms can be viewed as a standard form of Newton’s method from the nonlinear programming literature, followed by the normalization. This equivalence adds considerable...
متن کاملA Geometric Theory for Preconditioned Inverse Iteration I: Extrema of the Rayleigh Quotient
The discretization of eigenvalue problems for partial differential operators is a major source of matrix eigenvalue problems having very large dimensions, but only some of the smallest eigenvalues together with the eigenvectors are to be determined. Preconditioned inverse iteration (a “matrix factorization–free” method) derives from the well–known inverse iteration procedure in such a way that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014